Design for Cost, Manufacture, Assembly, and Other Measures

Chapter 11

 Table 11.1
 DFX topics in this book

Best practice	Section	Other best practices included	Goal		
Design For Cost (DFC)	11.2	Design for Value (DFV), value analysis	Minimize the cost to manufacture the product		
Design For Manufacture (DFM)	11.3		Establish the shape of components to allow for efficient, high-quality manufacture		
Design For Assembly (DFA)	11.4		Measure the ease with which a product can be assembled		
Design For Reliability (DFR)	11.5	Failure Modes and Effects Analysis (FMEA), fault tree analysis, reliability engineering, design for safety, risk assessment and management	Measure how the quality of a product is maintained over time		
Design For Test and Maintenance (DFT and DFM)	11.6		Measure critical performance so it is easy to diagnose problems and design the product so it is easy to repair		
Design For Sustainability (DFS)	11.7	Design For Environment (DFE), green design	Measure the effect of the product on the environment throughout its entire life cycle		

Table 11.2 Effect of tolerance, finish, and material on cost

Control para	ameters	
Tolerance	Surface finish	Manufacturing cost
1. Fine	Intermediate	\$11.03
2. Nominal	Intermediate	\$8.83
3. Rough	Intermediate	\$7.36
4. Fine	Polished	\$14.85
5. Fine	As turned	\$8.17
6. High-carbon steel		\$22.45

Note: For 1000 units.

T

(DFA) Design For Assembly									
Indivi	dual Assembly Evaluation	on for	: Irwin pre 2014 Clamp	Organiza	ation N	ame: Example			
	OVERALL ASSEMBLY								
1	Overall part count minimized							6	
2	Minimum use of separate fasteners						Outstanding	8	
3	Base part with fixturing f	eature	es (locating surfaces and h	noles)			Outstanding	8	
4	Repositioning required during assembly sequence						>=2 Position	4	
5	Assembly sequence efficiency						Very good	6	
	PART RETRIEVAL								
6	Characteristics that com	plicate	e handling (tangling, nestir	handling (tangling, nesting, flexibility) have been avoided					
7	Parts have been designed	Parts have been designed for a specific feed approach (bulk, strip, magazine)						2	
	PART HANDLING								
8	Parts with end-to-end sy	end-to-end symmetry						4	
9	Parts with symmetry about the axis of insertion						Some parts Some parts	4	
10	Where symmetry is not possible, parts are clearly asymmetric						Most parts	6	
	PART MATING								
11	Straight-line motions of assembly						Some parts	4	
12	Chamfers and features that facilitate insertion and self-alignment						Some parts	4	
13	Maximum part accessibility						All parts	8	
Note:	Only for comparison of a	alterna	te designs of same assen		70				
Team member: Fred Smith					d by: Fred Smith				
Team member: Omhi Ubolu				С	Checked by: Prof Chan		Approved by:		
The Mechanical Design Process				Designed by Professor David G. Ullman					
Copyright 2014, David Ullman					Form # 21.0				

David Ullman

David Ullman

(a) The assembly fits together only one way

(b) Two possible directions of insertion

(c) 360° rotational symmetry

T

FMEA (Failure Modes and Effects Analysis)

Product: Mars Rover Organization Name: Jet Propulsion Lab

#	Function Affected	Potential Failure Modes	Potential Failure Effects	Potential Causes of Failure	Recommend Actions	Responsible Person	Taken Actions
1	Propel Rovert	No torque o wheel	Wheel stops turning	Motor failure	Ensure motors have high reliability—at least >99% for a 90 sol mission	Tim Smithson, Electronics Div.	Vendor required to submit failure test results
2			Wheel stops turning	Motor failure	Test ability to propel Rover with 1 or 2 drive wheels inoperative	Barb Rojo	Prototype tested with 2 motors off line
3		Wheel jambs against rock		Inability to sense rocks	Develop ability to sense and avoid rocks or feedback torque increase	B. J. Smith	Work in progress
4			Wheel damages surface	Wheel surface too soft	Specify surface that can with stand abrasion	N. Knovo	Hard test developed
Team member: B. Rojo Team member:			er:	Prepared by: N. Knovo			
Team member: B. J. Smith T			Team member:		Checked by: A	pproved by:	

The Mechanical Design Process

Designed by Professor David G.Ullman

Copyright 2014, David Ullman

Form # 22.0

 Table 11.3
 Basic fault tree symbols

Event block	FTA symbol	Description			
Event		An event, something that happens to something and causes a function to fail			
Basic Event		A basic initiating fault or a failure event			
Undeveloped Event		An event that is not further developed			
Logical operation	FTA symbol	Description			
AND		The output event occurs if all input events occur			
OR		The output event occurs if at least one of the input events occurs			

 Table 11.4
 Failure rates of common components

Mechanical failures, per 10 ⁶ l	hour	Electrical failures	Electrical failures, per 10 ⁶ hour		
Bearing (life function of load)		Meter	26		
Ball	13	Battery			
Roller	200	Lead acid	0.5		
Sleeve	23	Mercury	0.7		
Brake	13	Circuit board	0.3		
Clutch	2	Connector	0.1		
Compressor	65	Generator			
Differential	15	AC	2		
Fan	6	DC	40		
Heat exchanger	4	Heater	4		
Gear	0.2	Lamp			
Pump	12	Incandescent	10		
Shock absorber	3	Neon	0.5		
Spring	5	Motor			
Valve	14	Fractional hp	8		
		Large	4		
		Solenoid	1		
		Switch	6		

Product or component Coffee Machine		Project Example			
Date 18-8-2014		Author Ullman			
Notes and conclusions Analysis of a coffee mad	hine. Assumption: 5 years	use, $2 \times day$, h	alf capacity, keep	hot for 30 minute	s
Production Materials, treatments, tr	ansport and extra energy				
Material or process class	Material or process detail	Units	Amount	Indicator	Result
Plastics	PS (HIPS)	kg	1.00	360.000	360.00
Plastics_processing	Injection moulding -1	mPts		21.000	21.00
Non_ferro_metals	Aluminium 0% Rec.	kg	0.10	780.000	78.00
Metals_processing	Extrusion-aluminium	kg	0.10	72.000	7.20
Ferro_metals	Steel	kg	0.30	86.000	25.80
Packaging	Glass (white)	kg	0.4	58.000	23.20
Heat	Heat gas (industrial furnace)	MJ	4	5.300	21.00
Total (mPt)					536.40
Use Transport, energy and po Use class	ossible auxiliary materials Use detail	Amount	Measure	Indicator	Result
Electricity	Electricity LV the Netherlands	kWh	unit 375	37.000	13875.00
Packaging	Paper	kg	7.3	96.000	700.80
Total (mPt)					14575.80
Disposal Disposal processes for e	each material type				
Disposal class	Disposal detail	Amount	Measure unit	Indicator	Result
Municipal_waste	Municipal waste PS	kg	1	2.000	2.00
Municipal_waste	pal_waste Municipal waste ECCS steel		0.4	-5.900	-2.36
Household_waste	Glass	kg	0.4	-6.900	-2.76
Municipal_waste	Municipal waste Paper	kg	7.3	0.710	5.18
Total (mPt)					2.06
Total (mPt) (all phases)					15114.26